Implementing Natural Language to Alloy Transformations
Kevin Driver, Russell Glasser, Louis Helm, Oswinudty

University of Texas, Austin, TX, USA
May 05, 2006

Abstract

This article describes how to implement an extdasiatural
language processor using JavaCC and JTB to cokmaght and Knave
logic puzzles written in English into Alloy cod&Ve also provide
working code to automatically solve these Alloy-edgroblems once
converted.

I ntroduction to Knight and Knave puzzles

Logician Raymond Smullyan is the author of manyKsoiiat
contain logic puzzles, includinghat is the name of this book?, The Lady
or the Tiger? andForever Undecided. Smullyan’s most famous puzzles
are undoubtedly his stories about the far off ‘el@f Knights and
Knaves.”

On this island there are only two types of peolil@ghts, who
always tell the truth, and Knaves, who always liea typical puzzle, the
reader is asked to imagine that he meets one @ natives of this island,
who make a series of factual statements. The résitleen asked to
deduce, based only on the statements presentech wople are Knights
and which are Knaves.

The problems range from the simple (one or twanidérs who
make short sentences) to the complex (involvingranpber of islanders
who make long statements with many clauses anditooms). Here is an
example of a basic puzzle found earlyVhat is the name of this book?:

Two people, A and B, were standing together
in a garden. A stranger passed by and asked
“Are you knights or knaves?” A said: “Either |
am a knave or B is a knight.” What are A and B?

The solution given later in the book (abridged héese

Suppose A is a knave. Then the statement
“Either | am a knave or B is a knight” must be
false. This means that it is neither true that

Ais a knave nor that B is a knight. So if A
were a knave, then it would follow that he is
not a knave — which would be a contradiction.
Therefore A must be a knight.

Since A is a knight, his statement is true.
Therefore at least one of the possibilities
holds: (1) A is a knave; (2) B is a knight.
Since possibility (1) is false (since A is a
knight) then possibility (2) must be the correct
one, i.e., B is a knight. Hence A and B are
both knights.

Such simple puzzles can easily be solved in thdheimost
undergraduate computer science students, but énerfar more
complicated puzzles that are not so simply expthin@n the University
of Hong Kong's philosophy department website [iitpyw.hku.hk/cgi-
bin/philodep/knight/puzzle], we find a repositorfyoomputer generated
Knight/Knave puzzles.

One of the more complicated puzzles is as follows:

A very special island is inhabited only by
knights and knaves. Knights always tell the
truth, and knaves always lie. You meet three
inhabitants: Abe, Zoey and Zippy. Abe says, “At
least one of the following is true: that Zippy
is a knave or that | am a knight.” Zoey says,
“Abe could claim that | am a knave.' Zippy
claims, “Neither Abe nor Zoey are knights.”

Later puzzles at the same site involve up to saveabitants. In
his other books, Smullyan introduces even more ticatpd concepts.
For example, in some puzzles set in Transylvatiiml@abitants are either
humans (who tell the truth) or vampires (who alwig) but additionally,
the inhabitants are either sane (and hence balielyerue statements) or
insane (and believe false statements). Henceysamé vampire might
falsely believe that 2+2=5, but he would “lie” atail you that 2+2=4,
thereby making a correct statement! And in evéar lehapters, instead of
answering questions with “yes” and “no,” they use made-up words
“pal” and “da,” which could mean either one.

In principle, there is nearly unlimited potentialmultiply the
complexity of such problems. But even restrictingselves to the basic
Knight/Knave category of puzzle, as the numbenbgbitants and the
number of clauses in their statements increasqrtitdems can quickly

become so complicated as to overwhelm the reas@aipgbilities of
most readers.

An Alloy Framework

It is clear that this sort of logic puzzle is deal candidate for
modeling in Alloy. Alloy is designed to model afasit logical constructs,
and determine the consistency and specific solsittdra set of conditions.

For this project, we decided to create a systexhgbes through
the following steps:

1. A Knight/Knave puzzle is written, in a limited s@b®f plain
English, and stored in a file.

2. A parser reads the file and translates it into #ayAprogram.

3. The program is then loaded into Alloy, and the 8ohs are found,
if any exist.

The first task was to develop a general frameworkrodeling
the world of Knights and Knaves. We created thiefdng basic types:

* “Type”is an abstract superset of “Knights” and ‘d\es.”

sig Type { }
one sig Knight, Knave extends Type {}

* “TruthValue” is an abstract set determining thettiror falsehood
of a statement. Specific TruthValues are defirebe either
“True” or “False.”

abstract sig TruthValue { }
one sig True, False extends TruthValue {}

* ‘“Islanders” are people who have a type of eitheigkit or Knave.
They are able to make a set of “claims”, or stat@sjevhich are
used determine which type they are.

abstract sig Islanders {
type: one Type,
claims: set Statement
}

» “Statements” are claims made by Islanders, whicte fzatruth
value (either true or false).

abstract sig Statement {
value: TruthValue
}

* The rest of the basic Alloy framework involves sfietypes of
statements such as simple declarative claims‘(Car] is a
knight”), negations (i.e., “John is not a knightpnjunctions (i.e.,

“Sue is a knight and Frank is a knave”), and disjiams (i.e.,
“Tony is a knave or Jen is a knight”).
* We specify the condition that an islander can neaktatement
that is “True” if and only if he or she is a Knight
fact {
all i: Islanders | all s: i.claims |
i.type = Knight <=> s.value = True

}

The next task was to generate Alloy code for asample
problems. For instance, consider the example pugzbve, where there
are two people, and only one of them makes a s&tertEither | am a
knave or B is a knight.”

Our grammar does not allow for the self referdstiatement (“I
am”) so we first reword the sentence as “Eithes A knave or B is a
knight.” Then we define the following objects:

one sig A, B extends Islanders {}

And we also define three statements: S1, “A isavk”; S2, “B is
a knight”; and S3, “S1 or S2”. The resulting sta¢mts looks like this:

one sig S1 extends Isa{}

{
A in target

isa = knave

}

one sig S2 extends Isa{}

{
B in target

isa = knight
}

one sig S3 extends Or{}
{

clause = S1+S2

}

Finally, we express the fact that A said the tistatement:

fact { says (A, S3)}

With all this work completed, we are able to pthg resulting
code into Alloy and see the following result:

claims

target

knightd

Figure 1. Sample output from Alloy

As you can see from the picture, the individuanslers “A” and
“B” are represented in the upper left corner; glander types “Knight”
and “Knave” are represented on the bottom of tlaplgras are the
possible truth values “True” and “False”. Statetse®il and S2 are
atomic statements, expressing that “somebody segong” (either
Knight or Knave). S1 points upward to “A”, and domard to “Knave”,
indicating the claim that “A is a Knave.” It alpoints to the value of
“False”, meaning the program has determined thav&ilnot a true
statement.

S3is a disjunction of S1 and S2, so it pointsdthlsub-
statements, with the relationship of “clause.” dfy, “A” points to “S3”
with the relationship “claims,” indicating that s#eent S3 is in the set of
statements that A has uttered. S3 has a trutleddltifrue.” Since A has
spoken the truth, A is a Knight, which is reflectedhe fact that A’s
“type” arrow points to “Knight.” B is also a Knigh Thus, we have
discovered a complete solution to the puzzle.

Knight/Knave Grammar Elements

In processing any subset of natural languageamgnar is needed.
A grammar defines a set of possible language ptamhswhich
completely maps the set of meaningful inputs adigeto that grammar.
Knight/Knave problems themselves have a relatigetyple grammar.
However, we found during the course of our worlatthis possible to
add many additional extensions to the base granmwader to enhance
the problem scope we could represent.

Grammar design is outside the scope of this padewever, two
key ideas behind grammar design are relevant tevouk. The first of
these is ambiguity. Most modern-day grammar toatswarn about this
type of problem, but it is critical to ensure thailtiple inputs cannot
follow more than one grammar production. Secondkglligent design
was necessary in order to construct a grammacthat be easily and
intuitively expanded and enhanced. In designinggpammar, we were
careful to keep these two concepts in mind.

Preliminarily, we wanted to allow for the most feasnight/Knave
problems. It is desirable to be able to make statds about particular
islanders simply describing whether these islanderg Knights or
Knaves. This grammar was rudimentary, and easipliemented in the
form Identifier AssignmentExpression Islander .
AssignmentExpression is expanded in the productions to support “is
a” or “is not a” clauses.

In most Knight/Knave problems, a given islandeuldcstate a
claim about one or more islanders in a simple odenately complex way.
Modifications to the basic grammar outlined aborersecessary. The
next iteration of our grammar starts out in therfoidentifier
SaysLiteral Statement

This form can then be expanded via S8t@ement in order to
allow for three main types of productions:
SimpleStatementAndSimpleStatement ,
SimpleStatementOrSimpleStatement , andSimpleStatement

SimpleStatement fully encompasses the initial grammar
outlined above, while the “And” and “Or” clausesnjdwo
SimpleStatement clauses in a conjunctive or disjunctive mannerisTh
grammar takes advantage of lookaheads. Theséewviiscussed in more
detail below.

Conceptually, this iteration of the grammar ldys toundations
for parsing robust enough to handle an example aschis:

Bob says Alice is a Knight and Carol is a Knave.
Alice says Bob is a Knave.

Carol says either Alice is a Knight or Carol is

a Knight.

Thus, with these and similar examples in mind,aagmar is
constructed. The final grammar can be viewed ipeXulix C.

With a robust grammar, how can natural languagedmsformed
into the Alloy modeling language?

A tool exists, which was developed at Purdue Unsityg and is
now maintained at UCLA, called JTB or Java Treeldri JTB can
parse a given grammar and generate a syntax tdeseqof interfaces for
visitor classes for the grammar. It also generateadjusted grammar file
output, which is then parsed by another tool cal@ehCC. JavaCC then
generates a set of scanner and parser classesdragedJTB grammar.
JavaCC can be thought of as combining the fundiiyraf lex and yacc
into a single tool for the Java platform. Bothlsoare used extensively in
Appel's Modern Compiler Implementation in Java

Program

TovaCls ——r TTR: ——w Im.'zCC l_ Java Compiler — Parzer

ETAIIMAT Compaler
J:mx mde ‘
Swtax—tree—mde Syntax tree
with accept methods
Default wisiter

hitp:www cs ucla.eduw~palzberg/course/purdue/cs352/F00/color-lecturenotes. pd f

Figure 2: How JavaCC and JTB combineto create a new compiler

The benefits of using this approach with JTB aambCC are
twofold. Once a grammar has been defined, theniekey and parsing is
taken care of by the generated classes. The siexlasses recognize
their corresponding grammar elements, freeing éwveldper from the
mundane details of parsing. Constructions likd&édeeads further
simplify this process by aiding JavaCC in distirgiing between
productions in the grammar. JavaCC allows for)lwkh lookahead
parsing while utilizing the syntax tree generatgd BB in order to “visit”
a predefined set of possible nodes which makevglid given input.

This “visitor” model allows for intuitive represeatton of the grammar in
the context of the familiar tree data structureadds can be parsed and
dealt with at the leaf level and then passed upréeeto non-leaf nodes in
order for further processing in context; thus, seticameaning of the leaf
nodes can be established as visitors pass prodadtiaher up the tree.
Another benefit of the “visitor” tree model is thaallows for
transformation between intermediate representatidnansforming from
a high-level language such as Java to Assemblyiresgseveral
intermediate representations. Fortunately, witblligent design of some
foundational Alloy code, transformation from Knigkmave problems in
natural language to Alloy code solely requires waasformation.

At its heart Alloy is about sets and relationsight/Knave
problems are fundamentally simplistic enough st dhset of islanders
and statements/claims about them can be intuitivelpped directly to
Alloy code. This is why this particular problemrdain was chosen for
research in NLP/Alloy interfaces.

Common Alloy code was developed which can be shbetween
any such Knight/Knave problem. There are diregdbpimags from the
grammar productions to this core Alloy code, whadllows for the 1:1
intermediate representation from the NLP procesbor. example,
AssignmentExpression maps directly to an “Isa”, or “Isa” in
conjunction with a “Not.” In this way code can $igared and reused
between models and NLP to Alloy generation requi@gtermediate
representation transformations.

Visitors Class | mplementation

A default visitor class is produced for each gramwmiaen the JTB
is run on the “.jjt" grammar file. A depth-firstatversal is used to visit
each leaf and non-leaf node of the abstract syim¢@x To parse the
grammar, we customized the default visitor classdésanslate individual
parts of the grammar into Alloy. A new customizesitor method was
defined for each actor in the production. Eaclracalls child elements
in the syntax tree using "accept" methods until temles are reached.
The "accept" methods for non leaf nodes invokevibigor methods for
the calling actor. The "accept" methods in leade®carry out actions to
retrieve the leaf information for the node. Orfoe feaf node is reached,
parents are recursively returned to until the ramte is reached.

Consider the following example:
Sue says Zippy is a knave.

Goa

|

KnightKnaveProbler
Statemer
Identifier SayslLitere
“Sue” “Says’

SimpleStateme

l

Assignment Expressit

v v

IsLiteral Aliteral Islande

Identifier

HZippy” HiS” “a” “Knave”

Figure 3: Example Abstract Syntax Tree

The program starts by running the main methodpassing the
input line above from a file. After the input istalmed, a "root" visitor is
instantiated. Main runs the "accept" method orrtlo object and passes
a new instance of a "Knight Knave visitor parsex'ttee new visitor
method. The “accept” method of "Knight Knave visigarser" calls the
“visit” method of the "Goal" object to initiate thieee traversal.

The "Goal" begins the tree traversal by calling"tecept” method
of its child node, "KnightKnaveProblem".

The "KnightKnaveProblem" accept method calls ttst vhethod
of its "accept” method of its' child, "Statement".

The "Statement” visit method calls the "acceptthuds of its'
children, "Identifier", "SaysLiteral" and "Simplaégement".

"Identifier" is a leaf node and calls the "accept'the nodeToken,
the nodeToken visit method obtains the string takeah returns control to
the "Identifier” visit method. The "ldentifier" sit method stores the data
for later use during the generation of the Allogleo Control is returned

to the "Statement” visit method. The "Statemengitwvnethod stores the
return parameter from "ldentifier" and calls theySLiteral " accept
method.

The "SaysLiteral" is also a leaf node, so itstwigéthod calls its
"accept" method for the nodeToken. The nodeToksihmethod obtains
the string token and returns control to the "Satgshi" visit method. The
"SaysLiteral" returns control to the "Statementtaavhich calls the
"SimpleStatement” visit method.

The "SimpleStatement" method calls the accephoakfor is
children "ldentifier", “AssignmentExpressoin” ani$lfander.”

"Identifier" is a leaf node and calls the "accept'the nodeToken,
the nodeToken visit method obtains the string takeah returns control to
the "Identifier” visit method. The "ldentifier" sit method stores the data
for later use during the generation of the AllogleoControl is returned to
the "SimpleStatement” visit method. The "SimpléStent” visit method
stores the return parameter from "ldentifier" aatiscthe
"AssignmentExpression" accept method.

The "AssignmentExpression” method calls the acoegihods for
its children "IsLiteral" and "ALiteral".

The "IsLiteral" is a leaf node, so its visit methealls the "accept”
method for nodeToken. The nodeToken visit methddiob the string
token and returns control, obtaining the stringetokor "is". Control is
returned to "AssignmentExpression".

The "AlLiteral” is a leaf node, so its visit methealls the "accept
method for nodeToken. The nodeToken visit methatdias the string
token and returns control, obtaining the stringetokor "a". Control is
returned to "AssignmentExpression”.

AssignmentExpression combines the "IsLiteral" #red"AlLiteral”
into a "isa" "AssignmentExpression”. Control itureed to
"SimpleStatement," where the information is proedssto Alloy code.
"SimpleStatement” then calls its accept, wheré'ldlander” accept
method is run. The islander is a leaf node, seisis method returns the
islander type as a "knave".

After the final leaf node is reached, parametezgpassed up the
tree until control is returned to the root. Thetrpasses control back to
the main program where a call is made to a routirereate the “.als” file
based on static code (Alloy definitions that do clenge from problem to
problem) and dynamic data obtained during the pgrsf each
Knight/Knave problem.

Visitors make object-oriented systems more flexity allowing
the manipulation of composite objects and the sdjwar of unrelated
operations. This flexibility is obtained withoutanging existing classes
of the objects. Instead of using dedicated metbhodemplete an

operation, the visitor uses an "accept" methodacheclass and code
within a "visitor" class to carry out a specifidiao.

To create a visitor, code must be inserted diyeotb an object
structure. Next an accept method must be includedch object class.
Finally, a visitor class must be defined with atuisethod for each actor
in the production.

Current Project Extensibility

One benefit of using a natural language parsiaisthe program
has almost unlimited extension capabilities. Dugrhe considerations,
we worked with a very limited subset of Englisht there are many ways
that this project could be improved in the futuighwnore English
language concepts. Some additional types of satenthat we
considered include:

* Expanded support of pronouns, i.e., accurate stppthne
statement “I am a knight.”

* Hypothetical claims: “John could say that | am ghti’; “Only a
knight would say that John is a knave.”

* More complex negation: “It is not the case thatyisea knight
and Zippy is a knave.”

» If-then constructs; if-and-only-if constructs.

» Statements which are presumed to be always trabvarys false:
“2+2=4"; “2+2=5"; “The sky is blue”; “The sky is ylow”

* Real world statements whose truth-value is unkndwbwhose
value we wish to solve for: “Either | am a knavelue treasure is
behind door number one.”

Further Applications

In developing this NLP to Alloy engine, itabvious that we would be
mindful of further applications of such work. Wensider further
applications in two realms. First, how can ourent engine be extended
in order to be relevant to other problem domais® such application
might be in boolean formulae. For instance, madgyhe grammar only
slightly, we could obtain statements of the form:

Formulal says either x1 is true or x2 is true.
Formula2 says either x1 is false and x3 is true.

These statements could be used to correct boelears and fill in
truth assignments. Another slight alteration ie grammar could be used
in modeling network paths and representing thedllimy. It is a
common algorithm in networking to decide which ingtports must be
open and closed in order to construct a minimunmisipg tree.

Routerl says rlr2 is open or rlr3 is open.
Router2 says rlr2 is closed and r2r3 is open.

These types of statements demonstrate stateswhidiprocess of
constructing such a minimum spanning tree and eamsbd in order to
model state as a network proceeds through thigrolas algorithms.

Clearly these are straightforward applicationthefexisting
grammar with slight modification. Other relateghgations may exist as
well, but these are the most obvious. Speakingerabstractly, but
extrapolating from the progress we have made ltergy be possible at
some point in the future to describe specificatiaosording to a much
richer grammar and to generate reasonable andtrAbag models from
natural language. Imagine writing specificatiomsatural language and
being able to generate Alloy models directly frdrage specifications.
We are confident that given a proper grammar aagthper number of
intermediate representations between natural lagegaad Alloy, it is
possible to describe a wide variety of problemsatural language and to
convert them into an analogous Alloy representatiGonsider broader
applications. If a particular grammar and setrodpctions could be
applied to a set of eyewitness testimonies, itatdea possible to model
courtroom proceedings and check such proceedimgofsistency.
Perhaps a grammar could be designed to constdateastructure based
on a natural language description. Imagine Allogewhich defines a
tree, then describing in natural language thatigfaition of this tree
should be altered to describe a binary tree od#lack tree. Many of the
Alloy representations of data structures read ypdtisely to natural
language in their current form, so this is notastic logical leap.

There are important ramifications to work in tegace. With a
powerful modeling language like Alloy and the talghat surrounds it
coupled with the robustness of natural language,pbssible that
computers could one day be constructing modelsposing software, or
making decisions based on natural language ingatural Language
Processing and Alloy stand to take the computingduay storm with the
proper amount of research and effort.

Related Work

A great body of work exists which deals with Naluranguage
Processing and modeling languages like Alloy, Iugfty separately. A
natural language processing paper out of Stanfotlthes many of the
challenges faced in NLP: varying semantic concegrhsality, scope,
implied information [4]. These challenges face wi®le of natural
language, and they are real concerns. As for AN is continuously
developing the language and its features. Mang esamples and useful
logic proofs have been implemented in this languagauable
information exists in this space as well.

Perhaps where each is lacking is in the synelgyP on the
whole is a difficult problem, but what about impagireasonable
constraints on the grammar? A human can be taadipe instructions
in a certain subset of natural language withoutrigato learn the ins and
outs of software development. From the other timvaca large body of
work and examples from the modeling side lenddfitseeasy extension
of these models by simple alterations utilizingunak language.
Combining the separate but related work seems tmheharvested area,
but one ripe with potential.

The key seems to be coercing industry and acadenci@operate.
Microsoft Research, for example, has a dedicated diloup, and is
obviously more commercially interested in applioas of NLP. MIT’'s
work on Alloy is clearly very academic in naturéhs is demonstrated
clearly even in the default examples which arerithisted. Combining
these two entities, however, stands to create\aiuable amalgam of the
commercial/industrial interests of large corponasiovith the research-
oriented focus of the university. There is intéregtheory in this space
for the academics as well as potential for finalngan for the
businessmen. The differing factions of relatedkamged only combine
their efforts.

Works Cited and References

1. Smullyan, Raymond. What is the Name of This Book?
Touchstone Publishing, 1986.

2. Smullyan, Raymond. Forever Undecided. Oxford
Paperbacks, 2000.

3. Jackson, Peter & Moulinier, Isabelle. Natural
Language Processing for Online Applications:
Text Retrieval, Extraction, and Categorization.
John Benjamin’s Publishing Co., 2002.

4, Lev, Iddo; MacCartney, Bill; Manning, Christopher
D.; & Levy, Roger. Solving_Logic Puzzles: From

Robust Processing to Precise Semantics.
http://nlp.stanford.edu/~wcmac/papers/robust_pre

Online:

cise_acl04.pdf
Ljungberg, Anna & Schwitter, Rolf. How to Write_a

Document in Controlled Natural Language.

Online:
http://www.ics.mq.edu.au/~rolfs/papers/adcs2002-

short.pdf
Amble, Tore. Automated Solving of Problems stated

in Natural Language. Online;
http://www.nik.no/1995/amble.pdf

Bird, Steven; Klein, Ewan; Loper, Edward. NLTK
Tutorial: Parsing. Online:
http://nltk.sourceforge.net/tutorial/parsing.pdf

Rips, LJ. “The Psychology of Knights and Knaves.”
Cognition. 1989 Mar;31(2):85-116.

Kodaganallur, V. "Incorporating language
processing into Java applications: a JavaCC
tutorial." IEEE. Volume 21, Issue 4, 2004. p
70-77.

http://www.cs.princeton.edu/~appel/modern/java/JLe

X/
http://www.cs.princeton.edu/~appel/modern/java/CUP

/
http://www.cs.purdue.edu/jtb/ :
http://compilers.cs.ucla.edu/jtb/
https://javacc.dev.java.net/
http://alloy.mit.edu
http://www.hku.hk/cqgi-bin/philodep/knight/puzzie

Appel; Palsberg. Modern Compiler Implementation

in Java . Cambridge University Press, 2002.
Clarke, E.M. Model checking. MIT Press, 1999.

Appendix A - Alloy K&K grammar solver (static stub)
module KnightKnave

abstract sig Islanders {
type: one Type,
claims: set Statement

}
sig Type { }

one sig Knight, Knave extends Type {}
fact { #Type =2}

abstract sig Statement {
value: TruthValue

}

abstract sig TruthValue {}
one sig True, False extends TruthValue { }
/ffact { #TruthValue = 2 }

/| DEFINITION OF "Isa" rule
abstract sig Isa extends Statement {
target: Islanders,

isa: Type
fact {
alli: Isa |

i.value = True <=> i.target.type = i.isa

}

// DEFINITION OF "And" rule
abstract sig And extends Statement {
clause: set Statement

fact {
all a: And |
a.value = True <=> all s: a.clause | s.value=Tr ue

}

// DEFINITION OF "Or" rule
abstract sig Or extends Statement {
clause: set Statement

fact {
all a: Or |
a.value = True <=> some s: a.clause | s.value=T rue

}

/I DEFINITION OF "Not" rule
abstract sig Not extends Statement {

subst: Statement

}
fact {
all a: Not |
a.value = True <=> a.subst=Knight <=> a.subst=Kna

}

pred says (i: Islanders, s: Statement) {
sini.claims

}

/l knights say true things and knaves say false thi
fact {
all i: Islanders | all s: i.claims |
i.type = Knight <=> s.value = True

pred solve () {}
/l Puzzles go below this line

Appendix B - JTB input (knightknave.jjt)

options {
JAVA_UNICODE_ESCAPE = true;
VISITOR=true;

}

PARSER_BEGIN(KnightKnaveParser)
public class KnightKnaveParser {

}
PARSER_END(KnightKnaveParser)
SKIP : /* WHITE SPACE */

<IS:"is" >
| <A:"a">
| < AND: "and" >
| <OR: "or" >
| < EITHER: "either" >
| < NOT: "not" >

ve

ngs

| < KNAVE: "knave" >
| < KNIGHT: "knight" >
| < SAYS: "says" >

}
TOKEN : /* IDENTIFIERS */

{

< IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* >
I

<#LETTER:

[

"\u0024",
"\u0041"-"\u005a",
"\u005f",
"\u0061"-"\u007a",
"\u00c0"-"\u00d6",
"\u00d8"-"\u00f6",
"\u00f8"-"\uOO0ff",
"\u0100"-"\u1fff",
"\u3040"-"\u318f",
"\u3300"-"\u337f",
"\u3400"-"\u3d2d",
"\u4e00"-"\u9fff",
"\uf900"-"\ufaff"

]

>
I
< #DIGIT:

[
"\u0030"-"\u0039",
"\u0660"-"\u0669",
"\u06f0"-"\u06f9",
"\u0966"-"\uo9ef",
"\u09e6"-"\u09ef",
"\u0a66"-"\ua6f",
"\uOae6"-"\uOaef",
"\uOb66"-"\uoh6f",
"\uObe7"-"\uObef",
"\uOc66"-"\uoc6f",
"\uOce6"-"\uOcef",
"\u0d66"-"\uode6f",
"\u0e50"-"\u0e59",
"\uOed0"-"\uOed9",
"\u1040"-"\u1049"

]

>

}

/***

* The Grammar Starts Here *

***/

void Goal() :

{}
{

KnightKnaveProblem()
<EOF>

}

void KnightKnaveProblem() :
{}

{(Identifier() SaysLiteral() Statement())*

void Statement() :

{}

{
LOOKAHEAD(6)
SimpleStatementAndSimpleStatement()
| SimpleStatementOrSimpleStatement()
| SimpleStatement()

void SimpleStatement() :

{}

Identifier() AssignmentExpression() Islander()

void AssignmentExpression() :

{}
{

LOOKAHEAD(2)

IsLiteral() ALiteral()
| IsLiteral() NotLiteral() ALiteral()
}

void SimpleStatementAndSimpleStatement() :

{}
{
SimpleStatement() AndLiteral() SimpleStatement()

void SimpleStatementOrSimpleStatement() :

{}

EitherLiteral() SimpleStatement() OrLiteral()
SimpleStatement()

}

void Islander() :

{
{,
"knight"

| "knave"

}

}/}oid EitherLiteral() :
{

"either"

}
void OrLiteral() :
E}

}

void IsLiteral() :

void ALiteral() :
E}

Ilall

}

void NotLiteral() :
E}

nnotu

}
void SaysLiteral() :
{}

"SayS"

void AndLiteral() :
E}

"and"

}

void Identifier() :
E}

<IDENTIFIER>
}

Appendix C - BNF for knightknave.jj

NON-TERMINALS

Goal u= KnightKnaveProblem <EOF>

KnightKnaveProblem
Statement)*

Statement u= SimpleStatement

I
SimpleStatementAndSimpleStatement

SimpleStatementOrSimpleStatemen
SimpleStatement i= Identifier
AssignmentExpression Character

(Identifier SaysLiteral

| IsLiteral NotLiteral ALiteral

AssighmentExpression = IsLiteral ALiteral
SimpleStatementAndSimpleStatement = SimpleStateme
SimpleStatement
SimpleStatementOrSimpleStatement = "either" Simpl
SimpleStatement
Islander = "knight"

| "knave"
IsLiteral = "is"
Aliteral u= "a"
NotLiteral = "not"
SaysLiteral = "says"
Identifier = <IDENTIFIER>

Appendix D - Visitor Class

package visitor;
import syntaxtree.*;
import java.util.*;
import java.io.*;

/**

* Provides default methods which visit each node i
tree in depth-first
* order. Your visitors may extend this class.
*/
public class KnightKnaveParserVisitor extends
GJDepthFirst<Object,Object> {

private int statementNumber = 0O;
private String StaticObjectlloy0 = "module KnightK
\n abstract sig Islanders {\n ";
private String StaticObjectlloyl = " type: one Type
claims: set Statement \n }";
private String StaticObjectlloy2 =" sig Type { }\
sig Knight, Knave extends Type {}";
private String StaticObjectlloy3 =" fact { #Type =
abstract sig Statement { \n value: TruthValue \n }"
private String StaticObjectlloy4 = " abstract sig
TruthValue { } \n one sig True, False extends Trut
n";
private String StaticObjectlloy5 = " abstract sig |
extends Statement { \n target: Islanders, \n isa:
F\n"

nt "and"

eStatement "or"

n the

nave \n
,\n
n one

2}\n

hValue {

sa
Type \n

private String StaticObjectlloy6 =" fact { \n all

\n i.value = True <=> i.target.type = i.isa\n } \
private String StaticObjectlloy7 =" abstract sig A
extends Statement { \n clause: set Statement \n } \
private String StaticObjectlloy8 =" fact { \n all

| \n a.value = True <=> all s: a.clause | s.value=T
\n";

private String StaticObjectlloy9 = " abstract sig O
extends Statement { \n clause: set Statement \n } \
private String StaticObjectlloy10 =" fact { \n all

\n a.value = True <=> some s: a.clause | s.value=Tr
\n";

[lprivate String StaticObjectlloy11 =" abstract si
extends Statement { \n subst: Statement \n }";

private String StaticObjectlloyll = " abstract sig
extends Statement { \n target: Islanders, \n isnota
\n }\n";

private String StaticObjectlloy12 =" fact { \n all

| \n i.value = False <=> i.target.type = i.isnota
\n";

[lprivate String StaticObjectlloy11 =" abstract si
extends Statement { \n subst: Type \n }";

[lprivate String StaticObjectlloy12 =" fact {\n a
Not | \n a.value = True <=> a.subst.value=False \n
/lprivate String StaticObjectlloyl2 =" fact{\n a
Not | \n a.value = True <=> a.subst=Knight <=>
a.subst=Knave \n } \n";

private String StaticObjectlloyl3 = " abstract sig
extends Statement \n { targetl, target2: Islanders
private String StaticObjectlloy14 =" fact { \n all

| \n a.value = True <=> (a.targetl.type = a.target2
\n }\n";

private String StaticObjectlloyl5 = " abstract sig
Different extends Statement { \n target1, target2:
Islanders \n } \n";

private String StaticObjectlloy16 =" fact { \n all
Different | \n a.value = True <=> (a.targetl.type !
a.target2.type) \n } \n";

private String StaticObjectlloyl7 = " abstract sig
extends Statement { \n type: Type, \n subject: St
\n}\n";

private String StaticObjectlloy18 =" fact { \n all
WouldSay | \n a.value = True <=> (a.subject.value=T
a.type=Knight) \n } \n";

private String StaticObjectlloy19 =" pred says (i
Islanders, s: Statement) {\n s ini.claims \n } \n

i: Isa |
n-
nd
n;
a: And
rue \n}

a:, Or |
ue\n}

g Not

Not
: Type
i: Not
\n}

g Not

Il a:
JAl
Il a:

Same
\n}\n

a: Same
type)

a.

WouldSay
atement

a.
rue <=>

private String StaticObjectlloy20 =" fact { all i:
Islanders | all s: i.claims | \n i.type = Knight <=
s.value = True \n } \n pred solve () { } \n";

String KinghtOrKnave;

String firstStatement;

int scope = 0;

String secondStatement;

List list = new LinkedList();

List statementIDList = new LinkedList();

List statementList = new LinkedList();

List IdentifierList = new LinkedList();

public void createALS() throws Exception {
FileOutputStream out = new
FileOutputStream("KnightKnave.als");

PrintStream p = new PrintStream(out);

try {
p.printin(StaticObjectlloy0);
p.printin(StaticObjectlloy1);
p.printin(StaticObjectlloy2);
p.printin(StaticObjectlloy3);
p.printin(StaticObjectlloy4);
p.printin(StaticObjectlloy5);
p.printin(StaticObjectlloy6);
p.printin(StaticObjectlloy7);
p.printin(StaticObjectlloy8);
p.printin(StaticObjectlloy9);
p.printin(StaticObjectlloy10);
p.printin(StaticObjectlloy11);
p.printin(StaticObjectlloy12);
p.printin(StaticObjectlloy13);
p.printin(StaticObjectlloy14);
p.printin(StaticObjectlloy15);
p.printin(StaticObjectlloy16);
p.printin(StaticObjectlloy17);
p.printin(StaticObjectlloy18);
p.printin(StaticObjectlloy19);
p.printin(StaticObjectlloy20);
for (int i=0; i < list.size(); i++){

p.printin(list.get(i));

String ID = "\n one sig ";
for(int i=0; i < IdentifierList.size(); i++)
ID +="" + IdentifierList.get(i);
if(i = (IdentifierList.size()-1)){
lp.print(",");
ID +=""
}

ID +=" extends Islanders{} \n";

p.printin(ID);

p.printin("\n run solve for " + scope + " bu t"+
scope + " Islanders, " + statementNumber + " Statem ent");

p.close();

} catch (Exception €) {
System.err.printin("Error writing to file.")

}
I

I/ Objectuto class visitors--probably don't need to be
overridden.
I
public Object visit(NodeList n, Object argu) {
Object _ret=null;
int _count=0;
for (Enumeration<Node> e = n.elements();
e.hasMoreElements();) {
e.nextElement().accept(this,argu);
_count++;

}

return _ret;

}

public Object visit(NodeListOptional n, Object a rgu) {
if (n.present()) {
Object _ret=null;
int _count=0;
for (Enumeration<Node> e = n.elements();
e.hasMoreElements();) {
e.nextElement().accept(this,argu);
_count++;
}
return _ret;
}
else
return null;
}

public Object visit(NodeOptional n, Object argu) {
if (n.present())
return n.node.accept(this,argu);
else
return null;
}

public Object visit(NodeSequence n, Object argu) {
Object _ret=null;
int _count=0;

for (Enumeration<Node> e = n.elements();
e.hasMoreElements();) {
e.nextElement().accept(this,argu);
_count++;

}

return _ret;

}

public Object visit(NodeToken n, Object argu) {
null; }

I
I/l User-generated visitor methods below
I

/**

* f0 -> KnightKnaveProblem()

* 1 -> <EOF>

*/

public Object visit(Goal n, Object argu) {
Object _ret=null;
n.f0.accept(this, argu);
n.fl.accept(this, argu);
return _ret;

}
/**
*f0 -> (Identifier() SaysLiteral() Statement(
*/
public Object visit(KnightKnaveProblem n, Object
Object _ret=null;
n.f0.accept(this, argu);
Identifier e;
NodeListOptional g = (NodeListOptional)n.f0;
String SimpleObjectlloy = "\nfact {";
for(int i=0; i < g.size(); i++){
NodeSequence f =
(NodeSequence)n.f0.elementAt(i);
e = (Identifier)f.elementAt(0);
NodeSequence y =
(NodeSequence)n.f0.elementAt(i);
Statement z = (Statement)y.elementAt(2);
if (statementIDList.get(i) == z){
SimpleObjectlloy +=" says (" + e.f0
"+ statementList.get(i) +") \n" ;

}

SimpleObjectlloy += "} \n";

list.add(SimpleObjectlloy);
return SimpleObijectlloy;

return

)

argu) {

}

/**

* f0 -> SimpleStatementObjectndSimpleStatement()
* | SimpleStatementOrSimpleStatement()
* | SimpleStatement()
*/
public Object visit(Statement n, Object argu) {
String State = (String)n.f0.accept(this, argu)
statementList.add(State);
statementlDList.add(n);
return (State);

}
/**

* f0 -> Identifier()

* f1 -> ObjectssignmentExpression()

* 2 -> Islander()

*

public Object visit(SimpleStatement n, Object ar gu){
Object _ret=null;
String id = (String)n.f0.accept(this, argu);
String assignObj = (String)n.f1.accept(this, argu);
String assignProp = (String)n.fl.accept(this, argu);

if (assignProp == "Isa")}{
assignProp = "isa";

}
String characte = (String)n.f2.accept(this, a rgu);
statementNumber++;

String StatementID = "S"+statementNumber;
String SimpleObjectlloy;
if (assignObj != "Not"){

SimpleObjectlloy = "one sig " + StatementID +"
extends " + assignObj + "} \n{\n "+id +"in target
\n "+ assignProp + " =" + characte + "\n }";
telse{
SimpleObjectlloy = "one sig " + StatementID +"
extends " + assignObj + "}\n{\n "+id +"int arget \n
isnota =" + characte + "\n }";
}

list.add(SimpleObjectlloy);
return StatementID;

}

/**

* f0 -> IsLiteral() ObjectLiteral()

* | IsLiteral() NotLiteral() ObjectLitera 1)

*/

{

public Object visit(AssignmentExpression n, Obje

Object _ret=null;
n.f0.accept(this, argu);
NodeSequence g = (NodeSequence)n.f0.choice;
String Lit="";
if (g.size() == 2){
Lit = "Isa";
Yelse{
Lit = "Not";
} |
return Lit;
}
/**

* f0 -> SimpleStatement()
* f1 -> ObjectndLiteral()

* f2 -> SimpleStatement()
*/

public Object visit(SimpleStatementAndSimpleStat

Object argu) {

Object _ret=null;

String Statementl1 = (String)n.f0.accept(this,
n.fl.accept(this, argu);

String Statement2 = (String)n.f2.accept(this,
statementNumber++;

String StatementID = "S" + statementNumber;
String CompdAlloy = "one sig " + StatementID

extends And { } \n {\n clause =" + Statementl + "
Statement2 + "\n }";

list.add(CompdAlloy);
return StatementID;

}

/**

* fO -> EitherLiteral()

* f1 -> SimpleStatement()
* f2 -> OrLiteral()

* {3 -> SimpleStatement()
*/

public Object visit(SimpleStatementOrSimpleState

Object argu) {

Object _ret=null;

n.f0.accept(this, argu);

String Statementl1 = (String)n.fl.accept(this,
n.f2.accept(this, argu);

String Statement2 = (String)n.f3.accept(this,
statementNumber++;

String StatementID = "S" + statementNumber;

ct argu)

ement n,

argu);

argu);

ment n,

argu);

argu);

String ConjObjectlloy = "one sig " + Statemen
extends Or {} \n {\n clause =" + Statementl + " +
Statement2 + "\n }";

list.add(ConjObijectlloy);

return StatementiD;

}

/**

*f0 -> "knight"
* | "knave"
*/

public Object visit(Islander n, Object argu) {
Object _ret=null;
n.f0.accept(this, argu);
String charDef = n.f0.choice.toString();
if (charDef == "knight"){
charDef = "Knight";

Yelse{
if (charDef == "knave"){
charDef = "Knave";
}
}
return charDef ;
}
/**
* fO -> "either"
*/

public Object visit(EitherLiteral n, Object argu
Object _ret=null;
n.f0.accept(this, argu);

return _ret;
}
/**
*f0 -> "or"
*/

public Object visit(OrLiteral n, Object argu) {
Object _ret=null;
n.f0.accept(this, argu);
return _ret;

}

/**

*f0 -> "is"

*/

public Object visit(IsLiteral n, Object argu) {
Object _ret=null;
n.f0.accept(this, argu);
return _ret;

tiD+"

M

}

/**

*f0 ->"a"

*/

public Object visit(ALiteral n, Object argu) {
Object _ret=null;
n.f0.accept(this, argu);

return _ret;
}
/**
*f0 -> "not"
*/

public Object visit(NotLiteral n, Object argu) {
Object _ret=null;
n.f0.accept(this, argu);

return _ret;
}
/**
* 0 -> "says"
*/

public Object visit(SaysLiteral n, Object argu)
Object _ret=null;
n.f0.accept(this, argu);

return _ret;
}
/**
* fO -> "and"
*/

public Object visit(AndLiteral n, Object argu) {
Object _ret=null;
n.f0.accept(this, argu);
return _ret;

}

/**

*f0 -> <IDENTIFIEObject>
*/
public Object visit(Identifier n, Object argu) {
Object _ret=null;
n.f0.accept(this, argu);

for(int i=0; i < IdentifierList.size(); i++){
String IDL = (String)ldentifierList.get(i);
if(IDL == n.f0.toString()){
return n.f0.toString();

}
IdentifierList.add(n.f0.toString());

scope++;
return n.f0.toString();

Appendix E — Sample Test Cases

Test 1
Zoey says Mel is a knave
Mel says Zoey is not a knave and Mel is not a knave

Test 15
Betty says Peggy is a knave
Peggy says Betty is a knight and Peggy is a knight

Test 18

Alice says either Ted is a knave or Alice is a knig ht
Ted says either Alice is a knight or Ted is a knigh t
Test 88

Zippy says Zeke is not a knave
Zeke says Bill is a knave

Bill says either Bill is a knight or Zeke is a knig ht
Test 123
Zippy says either Bill is a knight or Alice is a kn ave

Alice says Bob is a knave
Bill says Alice is a knave
Bob says either Bill is a knave or Bob is a knight

Test 182

Sally says either Bart is a knight or Rex is a knig ht
Rex says Bart is a knave

Joe says either Bart is a knave or Rex is a knave

Carl says Rex is a knave

Bart says Carl is a knave and Rex is a knave

